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The solution of the two-dimensional problem of the theory of elasticity for a strip and the three-dimensional one for a plate are
formulated by simple iterations and using asymptotic estimates with respect to a small parameter. These problems are solved in
the literature by reducing the two-dimensional and three-dimensional problems to one-dimensional and two-dimensional ongs,
respectively, using the semi-inverse Saint-Venant’s method [1, 2]. It is assumed that the solution obtained by the semi-inverse
method has an error of the order of the relative size of the small domain of the applied self-balanced load. The treatment of
the hypotheses, introduced in the semi-inverse method, as a selection of the respective initial approximation of the method of
simple iterations enables the solution process to be formalized and provides an estimate of the error. The classical theory of
beams and plates is supplemented by a solution of the boundary-layer type. The procedure is illustrated by solving the problem
of a strip with an applied concentrated load. An additional solution for a rectangular plate, together with the solution of a
biharmonic equation, enables three boundary conditions to be satisfied on cach free end surface. © 2003 Elsevier Led. All rights
reserved.

!. THE PROBLEM OF THE BENDING OF A STRIP

We will first consider the static antisymmetric problem for a long rectangular strip. We will relate it to
the system of rectangular coordinates x*, z* in such a way that -/ < x* </ ~h < z* < h, (/ is half the
length of the strip and £ is half its height). We will introduce dimensionless coordinates x = x*//,
z = z*/h and dimensionless displacements u = u*/h, w = w*/h along the x*, z* axes respectively, and
dimensionless stresses 6, = o;/E, 6, = 6/E, T = t*/E (the dimensional displacements, stresses and
loads are denoted by an asterisk).

We will write the equations of the plane problem of the theory of elasticity, describing the stress-
strain state of a strip of unit width, in the form

ou _ _ow 96, o1 _ Ou
3 = —£§;+2(1+v)1:, I €30, & = L
(1.0
6, =g +Vo,, € = (l—vz)oz—ve,, %vf = €, gg = —e%(i’
Z N X
Here € = h/l is a small parameter.
We will seek the solution of Eq. (1.1) in the following way. Putting
w=w(x), T=Te) (1.2)

in the first and second equation we will calculate u, and o,; as known quantities of the zeroth
approximation. We will then calculate €, and evaluate 6, and €, using the relations of elasticity.
Substituting these into the last two equations of Eq. (1.1) we will obtain wy and 7, in the first
approximation. The process of computing the next approximation can be continued.

Equation (1.1) reduces to the system of two equations

o't 39°w 20%1 9w 29w 2 Ot
— = = - (2+V)e'T—, — = Ve — —(l+Vv)e=— 1.3
a7 ox’ ax* 9 ox® dx (1)
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which we will write in the vector form

b = Ab+cz+d
3 2
zz 83—3—3 —(2+v)82—a—5
A= ” dx dx dzds
00 29 2.0

VE EE —(1+v) 8(.—);

b={tw} c={310zdwdz},.o d={1,w}_,

after double integration with respect to z.
We will seek the solution of the vector equations by the method of simple iterations.

b,,, = Ab,+cz+d

(n is the number of the iteration).

If the operator A is the compressing operator, the sequence of approximations bn converges to the
exact solution of the equation as n — oo, irrespective of the choice of the initial approximation b,. There
are numerous examples of the use of the method of simple iterations [3]. It is obvious that the sequence
of the calculation of iterations described, originating from Eq. (1.1) and the sequence originating from
Eq. (1.3) with a subsequent calculation of all the unknown quantities again originating from Eq. (1.1),
are identical.

For convenience we will divide the initial approximation (1.2) into two

w= WO(.x), T= TO =0 (1.4)

w=wy=0, T=1y(x) (1.5)

We will call the process of computing the unknown variables starting from (1.4) the w-process, while
the process starting from (1.5) will be called the t-process.

The calculation of the components of the stress—strain sate gives in the w-process

1 2
w = Wo(x), To = O, uo = —£Woz, exo = ~£ Waz, GZO = 0

1.6
G, = —ezwaz, €0 = vszw{;z, w, = ve2w322/2, T = £3w5'22/2 (L9
and in the t-process
T =T(x), wg=0, uy=2(1+V)T5z, G, = —€T2Z
€0 = 2(1+V)eTyz, O,y = (2+V)ETHZ, €, = ~(1 +v)2st;,z (1.7)

w, = —(1 +V)2€sz /2, T = _(2+V)£2TSZ 2

Differentiation with respect to x is denoted by a prime.

We will assume that wy is a slowly varying function and 7 is a rapidly varying one. This means that
the application of the operator d/dx to the function w; in an asymptotic sense is equivalent to multiplying
this function by € and the application of the operator to T, is equivalent to an increase by a factor of
€71, We will call the first function the function of zero variability and the second the function of unit
variability.

Let the longitudinal edges of the strip be free from shear stresses. Then Eqs (1.6) and (1.7) imply
that the sum of the shear stresses of the w-process and the t-process gives the equation

Ewyl2- Tk +7, = 0, k* = 2/(2+V)

forz = 1.
Considering the last equation as an equation for ty(x), we will find it slowly varying particular solution
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Th = —€ wy/2 (1.8)
and its rapidly varying general solution
tg = Cle-kxle+C2ekx/£ (19)

The boundary conditions for 6, specified by the loading conditions, must now be satisfied on the
longitudinal edges of the strip. It can be shown that if the strip is loaded by a distributed load
q* = q*(x*), the boundary conditions are satisfied when there is no singular solution (1.9). The equation
of classical theory

2/3€4w(|,v =gq, q=q*E

is obtained for wy,.

The displacement w, determined from this equation enables four conditions on the ends of the strip
x = %1 to be satisfied.

We will now consider the case of the loading of a freely supported strip with a load ¢* on part of a
short length 2¢ (see the figure). We will replace the distributed load by a concentrated force P* = 2g*c.
A solution of the type (1.9) arises close to the point of application of the force P* and decays rapidly
with distance from the point x = 0. At the ends of the stripx = =1 we have

h
=

-h

1
* = 4_Pp*
dz __2P

x* =4l

These conditions, together with (1.6) and (1.7), lead to an equation for determining w,

(1.10)

23 -P/2 when -1<x<0
-—E Wo =
3 P/2 when 0<x<1

Here P = P*/E is a dimensionless force.

Further, the conditions o, = 0 must be satisfied at the ends of the strip. The resultant expressions
for the stresses on the left half of the strip (for -1 < x < 0) have the form

T = -3/8P(1 —Zz)(l _ekxle)’ o, = 1/8P(22—3)kzekx/s .
6, = 38P[-4e (1 +x) + (2 + V)™ ]z .
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Similar expressions can be written for the right half of the strip.

The stress o, has a small correction in the form of the second exponential term in square brackets,
compared with the solution known from the strength of materials. Graphs of t and o, are shown in
Fig. 11 for P = 1. The stress t is given in the cross-section z = 0, and o, is given in the cross-section
Z = 1.

2. THE CONVERGENCE OF THE METHOD

Solution (1.6), assuming that differentiation with respect to x does not change the asymptotic order of
the required quantities with respect to €, gives

2 3 4
u~tw, (€,0,€)~Ew, T~&w, O,~Ew (2.1)

Solution (1.7), taking into account the fact that differentiation increases the required quantity by a
factor of €, gives zero orders for all the required quantities with respect to t. The quantities w and ©
are represented by series of the form

2 02 2
W= Wo+ VE Wz /24 ... = wy+0(e)
(2.2)

T=1-(2+ v)eztgz2/2 +... = Tp+ O(eo)

The first series is asymptotic, and the second is not. Confining ourselves to the first term of the series
for the calculation of w, we obtain an.error of the order of €? compared with unity. It is quite possible
that, due to the non-asymptotic character of the series for 1, several terms of the series should be taken
into account when calculating the quantity t. In this connection we will slightly change the procedure
for calculating the unknown quantities. We will rewrite Eq. (1.3) in the form

2 3 2 2 2
a—: = 839—-‘—:—(2 +v)§——12-:, a—‘%’ = v£2§_2 -(1+ v)a—T (2.3)
9z x ot> 9z x a8

introducing a new variable & = x/e so that the operation of differentiation of t with respect to & has

asymptotic order €°. We will seek the unknown variables w and 7 in the form of expansions in asymptotic
series in the small parameter &, i.e.

w= Yy we, T= 632 1,8’ (2.4)
s=0 s=0

where w;, 7, are quantities of order €”. Here we have taken into account that the relation
3
tf, %)y ~ew

follows from Eqgs (1.8), (1.9) and (1.11).
We obtain equations for determining the coefficients of series (2.4) in ascending order of s

3’1, w a1, dw, ow ot
— e 24—, —f = 222 (1 4v)=33 2.5
a7 X 8&2 o7 ox? £l 3)

by substituting expansions (2.4) into Eq. (2.3) and equating coefficients of like powers of €.
The quantities with negative indices should be considered to be equal to zero.
We will show that Eq. (2.5) is solvable in the zeroth approximation. Equations (2.5) have the form

az‘to zazto 3a3W0 aZWO
— - 2+V)E — = —, — =0 2.6
9z ox? ox a7’ 29

for s = 0. Here the inverse replacement of £ by x/e has been made.
It follows from the second equation that wy is only a function of x. Taking this into consideration we
will seek a particular solution of the first equation of (2.6) as a function of zero variability in x. In this
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case the second term on the left-hand side of the equation can be neglected as a small gqantity of order
¢?. Then the particular solution tf, taking into account the zero boundary conditions along the
longitudinal edges of the strip, will be determined by the expression

= wi(-1)12 (2.7)

The general solution which satisfies the condition that there are no shear stresses along the longitudinal
edges has the form of a boundary layer

% = [C ,,exp( )+ C "exp( )]cos"—nz, K, = B — (2.8)
0 'E,l 1 2 ne ) 22+ )2

where C,,,, C,, are constants of integration.

We now have expressions for T and w obtained by two methods. One of these (2.2) is obtained by
simple iterations originating from the initial approximations (1.4) and (1.5), while the second is obtained
by asymptotic integration based on a knowledge of the asymptotic estimates (2.1), again obtained by
simple iterations from the initial approximations (1.4) and (1.5). However, knowing the estimates, is
was possible to depart from approximation (1.5) and obtain the solution by a different method without
expanding T in series in powers of z. Equation (2.4) is equivalent to choosing the initial approximation
by the following method

w o= wy(x), T = To(x,2) (2.9)

i.e. it is assumed that only wy does not depend on the transverse coordinate.

In the theory of beams and plates the fact that w is independent of the transverse coordinate is
understood as the hypothesis of the non-deformability of the normal. The form (2.9) for t indicates
that, relative to 1, no assumptions were made in the initial approximation, even though the relation of
the orders of (2.1) between T and w was essentially used in the solution.

We will write the solution for the function T considered in the previous part of the problem for a
concentrated force

1= a3w3'z -1, 2 C2,,exp( )cosmzrz x<0

n=1

using relations (2.7), (2.8) and (2.1).
We will use the well-known expansion [4]

g2—1=_ 2_15 s725, -1<gsl

{(here and below n only has odd values) and smooth the gap at the point x = 0. We write the solution
in the following form

12 . x| nmnz .
=-;-5[I—exp( 8)]cos-2——n2 —3[1—exp( 8):'cos 5 (2.10)

=3n

The first term of the series is separated to compare it with expression (1.11), according to which,
taking v = 0.3, we obtain

0.94x/¢ 2

)(1-27)

We will leave only the first term on the right-hand side of Eq. (2.10), expand the cosine in a power
series and retain the first two terms of the expansion. This gives the following approximate expression
for 7, obtained from the solution of the equation of the boundary layer

= _0.375P(1 —e

l 04x/e

= —0.387P(1 - )1 -1.12%)
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The last two expressions are fairly close and the estimate of the residual in Eq. (2.10) as a quantity
of the order of 0.1 enables us to conclude that the initial approximation (1.5) produces a positive result.

We note that Eqs (2.6) are written for s = 0. We obtain the same equations for s = 1. Consequently,
Eq. (2.6) has an accuracy of €2,

3. THE BENDING OF A PLATE

We will apply the above approach to the problem of the bending of a plate. We will superpose the median
plane of a rectangular plate with the plane x*y* of the Cartesian system of coordinates x*y*z*. Let a
and b be the dimensions of the plate along the x* and y* axes respectively, and let 24 be the thickness
of the plate.

We will denote the dimensional displacements, stresses and load by an asterisk as in Section 1. We
will choose a, h and E as the units of measurement of length, displacements and stresses, respectively.
Then the region filled by the plate in dimensionless coordinates is given by the expressions

0<x<1, 0<£y<bla, -1<z51

We will write the equations describing the stress-strain state of the plate in the form

ou _ __ow do, o1, 01,
3 ——e-(.§+2(1+v)t,‘z (uov,xeoy), 5% - eax eay
Ju _ Ou_ _dv
€, = €3~ (e vxey), 2(1+v)r,, = €$+€ax
6. = £x+V€y+__V_oz (x(._)y) (31)

SR PELVER e

_ \ (1+v)(1-2v) aw _
g, = —1—_‘7(£x+€y)+————-—-1 v G, 3z =€,
at,, Jo, 01,

Bz = —E—a-;-ﬁa—y' (x(—)y)

The small parameter € = h/a is introduced here. The symbols u < v, x & y or x ¢ y after certain
equations show that there should be two equations of a similar type; the second equation is obtained
by circular replacement of the symbols shown.

Equation (3.1) is reduced to the following three equations by simple conversions

321:,2_ 1 30

2
azz = 1——;§€ a_wa + & ny (xey)
) (3.2)
Q_W = .LEZAW - l_ﬂg(at‘z + ét_yz)
92 1-v I-v'\dx dy

where

2 2 2
- 2-vo szo_a Txz0 19 Ty20

Ly = T1-v ox’ ayz ~1-voxdy

(xoy)

the solution of which will be constructed by simple iterations, having chosen the quantities of the initial
approximation as

w = we(x,y), T, = Ty (xey) 3.3)
We will write the expressions for 1,, and 1,, in the first approximation
2

1 d
T, = ( 1 Vze%;‘Awo + e"L,y)% +T0 (xO) (34)
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taking (3.3) into consideration and integrating the first two equations of (3.2) twice with respect

toz. '
Knowing 1, and 1,, we will write the expression for o,, calculated using the third equation of system

(3.1). We have

(arxzo a'tyz'.o)z
ox dy

o =[ 1 4,2 39L,, esaL ] (3.5)

Wo— €
1—V2 0 ax a}’

The usual boundary conditions t*,, = t*,, = 0 for the problem of the bending of a plate by a transverse
surface load g* for

*=th, 6 = Fq*/2 when *=%h

must be satisfied on the faces of the plate.
We obtain the following equations for determining w, and 1

1(—1 3aAw0+sL) T =0 (xoy)
1

6 2" 9

(3.6
.1-( 1 4.2 _sgany_a:;aLyx) (a't atyzo) - _g g = g— )
6\ j_y? ox dy ox oy 2’ E

on the faces of the plate corresponding to the boundary conditions by substituting the stresses (3.4)
and (3.5) into the boundary conditions.

We multiply the first equation of (3.6) by 1/3 and differentiate it with respect to x, multiply the second
equation by 1/3 and differentiate it with respect to y and add it to the third equation. We obtain

aszo Eatyzo - 3q

ox dy 4 (3.7
We will write the first two equations of system (3.6) as
1+v 2321,::0 232“::0 1 340 1 dq
T —v)£ o +€ 8y2 -T0 = me ;Awo—mea—x (xey) (3.8)

taking Eq. (3.7) into consideration.

We note, considering this system as a system in the unknowns 7,9 and 1,,, that it splits into two
independent equations.

Note that (3.5) reduces to the form

_ 1 L2V 9,0 ax,zo) z (az-,zo a-:,zo)
GZ—[—I.- €A I_EA(ax+ay ]6-—8 3% +—ay—Z

and this enables us, taking (3.7) into consideration, to write the third equation of system (3.6) as

2 4,2 2-v 2
—c A = g—-———€A 39
3(1—v2) Mo=d 2(1-v) ! 39)

Equation (3.9) is the resolvent for the quantities of the w-process. All the remaining unknown variables
can be expressed using (3.1) in terms of wy. If the surface load g has zero variability the second term
on the right-hand side of the equation can be neglected and an equation for the deflection is derived
which is identical with the equation of the classical theory of bending for plates. It has the form

DA** = —g*, D = 2ER’([3(1-V?)]

after changing to dimensional variables, where A* is the Laplace operator in the dimensional coordinates
x* and y*, and D the flexural stiffness of the plate [5].
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If wy and ¢ have zero variability, the estimate

4
~€q (3.10)

is derived from Eq. (3.9).
Then the particular solutions of Egs (3.8) are easily found

1
Tho = "miiB%Awo (xey) (3.11)

apart from quantities of the order of &°,

For the possibility of carrying out a further analysis we will assume that the components of the solution
of Eq. (3.1) can be expanded in Fourier series in the coordinate y, while retaining the functions of zero
varlablhty This enables us to neglect the second derivative with respect to y as a quantity of the order
of €2 in the first equation of Eq. (3.8). We will write the general solution of this equation as

—kx/€ —k(1~-x)/e

tho = Cee ™+ €™ B = 200-v)/(1+ ) (3.12)
where Cy, C; are constants of integration. The first term describes the solution which decays rapidly
with distance from the edge x = 0 and the second term describes the solution which decays rapidly with
distance from edge x = 1.

4. SATISFACTION OF THE CONDITIONS ON
THE FRONT EDGES OF THE PLATE

We will consider the procedure for satisfying the boundary conditions using the solutions of the w and

t-processes with the example of the bendmg of a plate under a load g = q,,,,, sin(mmnx)sin{nnay/b), where
m and n are numbers of the order of €°. At the edges y = 0 and y = a/b we will choose conditions
o, = w = u = 0, corresponding to the conditions of free support in the theory of plates [5]. These
conditions will be satisfied if we assume that v and 1, are proportional to cos(mnay/b), while the other
unknown variables are proportional to sin(mmnay/b). We will consider the edges of the plate x = 0 and
x = 1 to be free and require that the stresses on these should vanish

6, =7T,=1,=0 for x=0.1 4.1

These stresses in the plate, generated by the initial approximation (3.3), are easily calculated from Eqs
(3.1) and have the form

2 az a2 2 az
- € Wo Wy - € Wq
0,(wp) = l—vz[ 2 +V 5 Jz, T,y(Wp) = TRV,
3 2
__€E 9, 2 - 0T, 9T,
‘sz(wo) - l-v Zawaoz Txz = Txz00 Txy(szo’ tyzO) =& 3 +€ 3%

2-v ot 0 v a1 0
0, (Ty200 Tyz0) = 1__v€ axxz 1-v a);

The symbols wy, 1.0, T0 in brackets indicate quantities in terms of which the stresses are calculated.
We will write conditions (4.1), proceeding from these stresses and Eqs (3.10) and (3.11)
symbolically, as

a 8
£26 (Wo) + € o (szo’ z0)+£ 0,.(T,0) =0

- -1 P 14 o g
€ txy(w0)+€ Ty (Trz00 Tyz0) T € Toy(Tip) = 0 (4.2)

a-1

=2 P
T (W) +E T o+E ‘Cno =0



Analysis of the hypotheses used when constructing the theory of beams and plates 433

The coefficients of different powers of € are of the order of e’. Note that in (4.2) there are no stress
components which decay rapidly will distance from the edgesy = O andy = a/b, correspon_dmg to the
solution 18, The factor €* is written before the last terms in each equation where o is a certain arbitrary
exponent introduced due to the fact that 15, is the general solution.

We will assume in Egs (4.2) that o = —1. Then, retaining only the principal terms, we obtain conditions
of the form

Gwg) = 0, T (wy) =0, T (w)+Th+Ti=0 (4.3)

[t is well known [5] that the solution of the bi-harmonic equation for a rectangular plate, two opposite
edges of which are freely supported and the other two are free, contains four arbitrary constants. They
are determined from the first two conditions of (4.3). The last condition of (4.3), in which the first two
terms are known now, serves to determine the constant for the decaying component of the general
solution (3.12).

5. CONCLUSION

We will compare the results obtained with those obtained in [6, 7]. The classical theory of plates
is formulated in papers by Poisson, Kirchhoff, Thomson and Tait. It is assumed that the normal
element of the plate remains normal to the median surface and non-deformable during the deformation
process, i.e.

% = _%v;v (uev,xey), ow =0
In the terms of the present paper these hypotheses can be written as

T0=0 (xey), wy = wyx,y)

i.e. a priori hypotheses of the theory of plate [6] are a priori or initial approximations of the method
of simple iterations in this paper. Furthermore, they are part of the initial approximation (3.3),
which leads to the construction of the w-process. Other theories, called the Timoshenko, Reissner or
Reissner-Mindlin type theories can be obtained by introducing one hypothesis, namely, the hypothesis
of the invariance of the thickness of the plate during deformation. In the terms used here this is written
as

w = wo(x ), T,, = Te(xy2) (xy) (5.1

The difference between the choice of the quantities of the initial approximation (5.1) and (3.3)
consists in the equations of the boundary layer, as was shown in the example of a strip. For instance,
the equation of the boundary layer in partial derivatives with respect to x and z will correspond to the
choice of (5.1) at the edge y = const whereas Eq. (3.1) in which derivatives with respect to y should
be neglected, will correspond to the choice of (3.3). The asymptotic way is the straightest way of
obtaining the solution using the w and t-processes. The asymptotic process is easily formulated for
establishing relations of the type (2.1). They can be determined by reviewing the sequence of the
calculations by the method of simple iterations. The asymptotic process gives an equation of the
boundary layer in partial derivatives with respect to x and z, as shown in Section 2 using the example
of a strip. The same situation also occurs for the initial approximations (3.3) and (5.1). In the case of
(5.1) the solution of the boundary-layer equations can be represented in the form of an expansion in
a Fourier series with respect to the thickness of the plate. Confining ourselves to the first term of the
series we obtain a solution which is practically identical with the solution corresponding to the initial
approximation (3.3).
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